Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 253: 112484, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219407

RESUMO

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Assuntos
Azotobacter vinelandii , Compostos de Cádmio , Nitrogenase , Sulfetos , Nitrogenase/metabolismo , Molibdoferredoxina/metabolismo , Oxirredução , Ditionita/metabolismo , Catálise , Ácido Ascórbico/metabolismo , Azotobacter vinelandii/metabolismo
2.
mBio ; 15(2): e0298723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126751

RESUMO

Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria Xanthobacter autotrophicus and Aromatoleum aromaticum share 68% sequence identity but have been proposed to have different catalytic metals. In this work, the two ACs were expressed under the same conditions in Escherichia coli and were subjected to parallel chelation and reconstitution experiments with Mn(II) or Fe(II). Electron paramagnetic and Mössbauer spectroscopies identified signatures, respectively, of Mn(II) or Fe(II) bound at the active site. These experiments showed that the respective ACs, without the assistance of chaperones, second metal sites, or post-translational modifications facilitate correct metal incorporation, and despite the expected thermodynamic preference for Fe(II), each preferred a distinct metal. Catalysis was likewise associated uniquely with the cognate metal, though either could potentially serve the proposed Lewis acidic role. Subtle differences in the protein structure are implicated in serving as a selectivity filter for Mn(II) or Fe(II).IMPORTANCEThe Irving-Williams series refers to the predicted stabilities of transition metal complexes where the observed general stability for divalent first-row transition metal complexes increase across the row. Acetone carboxylases (ACs) use a coordinated divalent metal at their active site in the catalytic conversion of bicarbonate and acetone to form acetoacetate. Highly homologous ACs discriminate among different divalent metals at their active sites such that variations of the enzyme prefer Mn(II) over Fe(II), defying Irving-Williams-predicted behavior. Defining the determinants that promote metal discrimination within the first-row transition metals is of broad fundamental importance in understanding metal-mediated catalysis and metal catalyst design.


Assuntos
Acetona , Complexos de Coordenação , Acetona/metabolismo , Acetoacetatos , Manganês/metabolismo , Bicarbonatos , Metais/metabolismo , Compostos Ferrosos/metabolismo , Catálise
3.
Proc Natl Acad Sci U S A ; 120(30): e2302732120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459513

RESUMO

NifL is a conformationally dynamic flavoprotein responsible for regulating the activity of the σ54-dependent activator NifA to control the transcription of nitrogen fixation (nif) genes in response to intracellular oxygen, cellular energy, or nitrogen availability. The NifL-NifA two-component system is the master regulatory system for nitrogen fixation. NifL serves as a sensory protein, undergoing signal-dependent conformational changes that modulate its interaction with NifA, forming the NifL-NifA complex, which inhibits NifA activity in conditions unsuitable for nitrogen fixation. While NifL-NifA regulation is well understood, these conformationally flexible proteins have eluded previous attempts at structure determination. In work described here, we advance a structural model of the NifL dimer supported by a combination of scattering techniques and mass spectrometry (MS)-coupled structural analyses that report on the average structure in solution. Using a combination of small angle X-ray scattering-derived electron density maps and MS-coupled surface labeling, we investigate the conformational dynamics responsible for NifL oxygen and energy responses. Our results reveal conformational differences in the structure of NifL under reduced and oxidized conditions that provide the basis for a model for modulating NifLA complex formation in the regulation of nitrogen fixation in response to oxygen in the model diazotroph, Azotobacter vinelandii.


Assuntos
Azotobacter vinelandii , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Fixação de Nitrogênio/fisiologia , Transdução de Sinais , Oxirredução , Oxigênio/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Genes Bacterianos , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo
4.
Appl Environ Microbiol ; 88(17): e0104922, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000884

RESUMO

Biological nitrogen fixation requires large amounts of energy in the form of ATP and low potential electrons to overcome the high activation barrier for cleavage of the dinitrogen triple bond. The model aerobic nitrogen-fixing bacteria, Azotobacter vinelandii, generates low potential electrons in the form of reduced ferredoxin (Fd) and flavodoxin (Fld) using two distinct mechanisms via the enzyme complexes Rnf and Fix. Both Rnf and Fix are expressed during nitrogen fixation, but deleting either rnf1 or fix genes has little effect on diazotrophic growth. However, deleting both rnf1 and fix eliminates the ability to grow diazotrophically. Rnf and Fix both use NADH as a source of electrons, but overcoming the energetics of NADH's endergonic reduction of Fd/Fld is accomplished through different mechanisms. Rnf harnesses free energy from the chemiosmotic potential, whereas Fix uses electron bifurcation to effectively couple the endergonic reduction of Fd/Fld to the exergonic reduction of quinone. Different reaction stoichiometries and condition-specific differential gene expression indicate specific roles for the two reactions. This work's complementary physiological studies and thermodynamic modeling reveal how Rnf and Fix balance redox homeostasis in various conditions. Specifically, the Fix complex is required for efficient growth under low oxygen concentrations, while Rnf is presumed to maintain reduced Fd/Fld production for nitrogenase under standard conditions. This work provides a framework for understanding how the production of low potential electrons sustains robust nitrogen fixation in various conditions. IMPORTANCE The availability of fixed nitrogen is critical for life in many ecosystems, from extreme environments to agriculture. Due to the energy demands of biological nitrogen fixation, organisms must tailor their metabolism during diazotrophic growth to deliver the energy requirements to nitrogenase in the form of ATP and low potential electrons. Therefore, a complete understanding of diazotrophic energy metabolism and redox homeostasis is required to understand the impact on ecological communities or to promote crop growth in agriculture through engineered diazotrophs.


Assuntos
Azotobacter vinelandii , Trifosfato de Adenosina/metabolismo , Ecossistema , Ferredoxinas/metabolismo , NAD/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037354

RESUMO

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Assuntos
Bactérias , Coenzimas , Euryarchaeota , Mesna , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Coenzimas/biossíntese , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxirredução , Fosfatos/metabolismo
6.
Appl Environ Microbiol ; 88(6): e0187621, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138932

RESUMO

The ubiquitous diazotrophic soil bacterium Azotobacter vinelandii has been extensively studied as a model organism for biological nitrogen fixation (BNF). In A. vinelandii, BNF is regulated by the NifL-NifA two-component system, where NifL acts as an antiactivator that tightly controls the activity of the nitrogen fixation-specific transcriptional activator NifA in response to redox, nitrogen, and carbon status. While several studies reported that mutations in A. vinelandii nifL resulted in the deregulation of nitrogenase expression and the release of large quantities of ammonium, knowledge about the specific determinants for this ammonium-excreting phenotype is lacking. In this work, we report that only specific disruptions of nifL lead to large quantities of ammonium accumulated in liquid culture (∼12 mM). The ammonium excretion phenotype is associated solely with deletions of NifL domains combined with the insertion of a promoter sequence in the orientation opposite that of nifLA transcription. We further demonstrated that the strength of the inserted promoter could influence the amounts of ammonium excreted by affecting rnf1 gene expression as an additional requirement for ammonium excretion. These ammonium-excreting nifL mutants significantly stimulate the transfer of fixed nitrogen to rice. This work defines discrete determinants that bring about A. vinelandii ammonium excretion and demonstrates that strains can be generated through simple gene editing to provide promising biofertilizers capable of transferring nitrogen to crops. IMPORTANCE There is considerable interest in the engineering of ammonium-excreting bacteria for use in agriculture to promote the growth of plants under fixed-nitrogen-limiting conditions. This work defines discrete determinants that bring about A. vinelandii ammonium excretion and demonstrates that strains can be generated through simple gene editing to provide promising biofertilizers capable of transferring nitrogen to crops.


Assuntos
Compostos de Amônio , Azotobacter vinelandii , Compostos de Amônio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo
7.
Crit Rev Biochem Mol Biol ; 57(5-6): 492-538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36877487

RESUMO

Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Nitrogenase/química , Nitrogenase/genética , Nitrogenase/metabolismo , Amônia , Nitrogênio
8.
mBio ; 12(6): e0259321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903060

RESUMO

There is considerable interest in promoting biological nitrogen fixation (BNF) as a mechanism to reduce the inputs of nitrogenous fertilizers in agriculture, but considerable fundamental knowledge gaps still need to be addressed. BNF is catalyzed by nitrogenase, which requires a large input of energy in the form of ATP and low potential electrons. Diazotrophs that respire aerobically have an advantage in meeting the ATP demands of BNF but face challenges in protecting nitrogenase from inactivation by oxygen. Here, we constructed a genome-scale metabolic model of the nitrogen-fixing bacterium Azotobacter vinelandii, which uses a complex respiratory protection mechanism to consume oxygen at a high rate to keep intracellular conditions microaerobic. Our model accurately predicts growth rate under high oxygen and substrate concentrations, consistent with a large electron flux directed to the respiratory protection mechanism. While a partially decoupled electron transport chain compensates for some of the energy imbalance under high-oxygen conditions, it does not account for all substrate intake, leading to increased maintenance rates. Interestingly, the respiratory protection mechanism is required for accurate predictions even when ammonia is supplemented during growth, suggesting that the respiratory protection mechanism might be a core principle of metabolism and not just used for nitrogenase protection. We have also shown that rearrangement of flux through the electron transport system allows A. vinelandii to adapt to different oxygen concentrations, metal availability, and genetic disruption, which cause an ammonia excretion phenotype. Accurately determining the energy balance in an aerobic nitrogen-fixing metabolic model is required for future engineering approaches. IMPORTANCE The world's dependence on industrially produced nitrogenous fertilizers has created a dichotomy of issues. First, parts of the globe lack access to fertilizers, leading to poor crop yields that significantly limit nutrition while contributing to disease and starvation. In contrast, abundant nitrogenous fertilizers and associated overuse in large agricultural systems result in compromised soil quality and downstream environmental issues. Thus, there is considerable interest in expanding the impacts of BNF to promote improved crop yields in places struggling with access to industrial fertilizers while reducing fertilizer input in areas where overuse results in the degradation of soil health. A more robust and fundamental understanding of BNF biochemistry and microbial physiology will enable strategies to promote new and more robust associations between nitrogen-fixing microorganisms and crop plants.


Assuntos
Adaptação Fisiológica , Azotobacter vinelandii/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo , Amônia/metabolismo , Compostos de Amônio/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogenase/genética
9.
Biochem J ; 477(11): 2027-2038, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32497192

RESUMO

Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.


Assuntos
Acetona/metabolismo , Alcenos/metabolismo , Bactérias/metabolismo , 2-Propanol/metabolismo , Acetoacetatos/metabolismo , Acetilcoenzima A/metabolismo , Bicarbonatos/metabolismo , Catálise , Ciclo do Ácido Cítrico/fisiologia
10.
Nat Microbiol ; 5(2): 314-330, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844298

RESUMO

Legumes obtain nitrogen from air through rhizobia residing in root nodules. Some species of rhizobia can colonize cereals but do not fix nitrogen on them. Disabling native regulation can turn on nitrogenase expression, even in the presence of nitrogenous fertilizer and low oxygen, but continuous nitrogenase production confers an energy burden. Here, we engineer inducible nitrogenase activity in two cereal endophytes (Azorhizobium caulinodans ORS571 and Rhizobium sp. IRBG74) and the well-characterized plant epiphyte Pseudomonas protegens Pf-5, a maize seed inoculant. For each organism, different strategies were taken to eliminate ammonium repression and place nitrogenase expression under the control of agriculturally relevant signals, including root exudates, biocontrol agents and phytohormones. We demonstrate that R. sp. IRBG74 can be engineered to result in nitrogenase activity under free-living conditions by transferring a nif cluster from either Rhodobacter sphaeroides or Klebsiella oxytoca. For P. protegens Pf-5, the transfer of an inducible cluster from Pseudomonas stutzeri and Azotobacter vinelandii yields ammonium tolerance and higher oxygen tolerance of nitrogenase activity than that from K. oxytoca. Collectively, the data from the transfer of 12 nif gene clusters between 15 diverse species (including Escherichia coli and 12 rhizobia) help identify the barriers that must be overcome to engineer a bacterium to deliver a high nitrogen flux to a cereal crop.


Assuntos
Grão Comestível/metabolismo , Grão Comestível/microbiologia , Fixação de Nitrogênio , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Engenharia Metabólica , Família Multigênica , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Nodulação/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Simbiose/genética
11.
Free Radic Biol Med ; 140: 250-259, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735835

RESUMO

Biological nitrogen fixation via the activity of nitrogenase is one of the most important biological innovations, allowing for an increase in global productivity that eventually permitted the emergence of higher forms of life. The complex metalloenzyme termed nitrogenase contains complex iron-sulfur cofactors. Three versions of nitrogenase exist that differ mainly by the presence or absence of a heterometal at the active site metal cluster (either Mo or V). Mo-dependent nitrogenase is the most common while V-dependent or heterometal independent (Fe-only) versions are often termed alternative nitrogenases since they have apparent lower activities for N2 reduction and are expressed in the absence of Mo. Phylogenetic data indicates that biological nitrogen fixation emerged in an anaerobic, thermophilic ancestor of hydrogenotrophic methanogens and later diversified via lateral gene transfer into anaerobic bacteria, and eventually aerobic bacteria including Cyanobacteria. Isotopic evidence suggests that nitrogenase activity existed at 3.2 Ga, prior to the advent of oxygenic photosynthesis and rise of oxygen in the atmosphere, implying the presence of favorable environmental conditions for oxygen-sensitive nitrogenase to evolve. Following the proliferation of oxygenic phototrophs, diazotrophic organisms had to develop strategies to protect nitrogenase from oxygen inactivation and generate the right balance of low potential reducing equivalents and cellular energy for growth and nitrogen fixation activity. Here we review the fundamental advances in our understanding of biological nitrogen fixation in the context of the emergence, evolution, and taxonomic distribution of nitrogenase, with an emphasis placed on key events associated with its emergence and diversification from anoxic to oxic environments.


Assuntos
Cianobactérias/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Oxigênio/metabolismo , Bactérias Aeróbias/genética , Bactérias Aeróbias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Ferro/metabolismo , Molibdênio/metabolismo , Nitrogênio/metabolismo , Nitrogenase/genética , Fotossíntese/genética
12.
Metallomics ; 10(4): 523-538, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29629463

RESUMO

Most biological nitrogen fixation (BNF) results from the activity of the molybdenum nitrogenase (Mo-nitrogenase, Nif), an oxygen-sensitive metalloenzyme complex found in all known diazotrophs. Two alternative forms of nitrogenase, the vanadium nitrogenase (V-nitrogenase, Vnf) and the iron-only nitrogenase (Fe-only nitrogenase, Anf) have also been identified in the genome of some organisms that encode for Nif. It has been suggested that alternative nitrogenases were responsible for N2-fixation on early Earth because oceans were depleted of bioavailable Mo. Results of recent phylogenetic- and structure-based studies suggest, however, that such an evolutionary path is unlikely, and favor a new model for a stepwise evolution of nitrogenase where the V-nitrogenase and the Fe-only nitrogenase are not the ancestor of the Mo-nitrogenase. Rather, Mo-nitrogenase emerged within the methanogenic archaea and then gave rise to the alternative forms suggesting they arose later in response to the availability of fixed N2 and local environmental factors that influenced metal availability. This review summarizes the current state of knowledge on (1) the biochemistry of these complex systems highlighting the common and specific structural features and catalytic activities of the enzymes, (2) the recent progress in defining the discrete set of genes associated to N2-fixation and the regulatory features that coordinate the differential expression of genes in response to metal availability, and (3) the diverse taxonomic and phylogenic distribution of nitrogenase enzymes and the evolutionary history of BNF from the perspective of metal content and metal availability.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Molibdênio , Fixação de Nitrogênio , Nitrogenase/metabolismo , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento
13.
J Biol Chem ; 293(14): 5236-5246, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414784

RESUMO

For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Xanthobacter autotrophicus Py2, we identified four putative CoM biosynthetic enzymes encoded by the xcbB1, C1, D1, and E1 genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze ß-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes ß-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing ß-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate ß-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.


Assuntos
Mesna/metabolismo , Fosfatos/metabolismo , Xanthobacter/metabolismo , Aspartato Amônia-Liase/metabolismo , Bactérias/metabolismo , Biologia Computacional/métodos , Cristalografia por Raios X , Fumarato Hidratase/metabolismo , Fumaratos , Fosfoenolpiruvato/metabolismo , Ácidos Fosfóricos , Monoéster Fosfórico Hidrolases , Proteômica , Fosfato de Piridoxal
14.
Sci Rep ; 7(1): 7234, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775283

RESUMO

Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αßγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.


Assuntos
Acetona/química , Trifosfato de Adenosina/química , Sítios de Ligação , Dióxido de Carbono/química , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
15.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28802265

RESUMO

Syntrophomonas wolfei syntrophically oxidizes short-chain fatty acids (four to eight carbons in length) when grown in coculture with a hydrogen- and/or formate-using methanogen. The oxidation of 3-hydroxybutyryl-coenzyme A (CoA), formed during butyrate metabolism, results in the production of NADH. The enzyme systems involved in NADH reoxidation in S. wolfei are not well understood. The genome of S. wolfei contains a multimeric [FeFe]-hydrogenase that may be a mechanism for NADH reoxidation. The S. wolfei genes for the multimeric [FeFe]-hydrogenase (hyd1ABC; SWOL_RS05165, SWOL_RS05170, SWOL_RS05175) and [FeFe]-hydrogenase maturation proteins (SWOL_RS05180, SWOL_RS05190, SWOL_RS01625) were coexpressed in Escherichia coli, and the recombinant Hyd1ABC was purified and characterized. The purified recombinant Hyd1ABC was a heterotrimer with an αßγ configuration and a molecular mass of 115 kDa. Hyd1ABC contained 29.2 ± 1.49 mol of Fe and 0.7 mol of flavin mononucleotide (FMN) per mole enzyme. The purified, recombinant Hyd1ABC reduced NAD+ and oxidized NADH without the presence of ferredoxin. The HydB subunit of the S. wolfei multimeric [FeFe]-hydrogenase lacks two iron-sulfur centers that are present in known confurcating NADH- and ferredoxin-dependent [FeFe]-hydrogenases. Hyd1ABC is a NADH-dependent hydrogenase that produces hydrogen from NADH without the need of reduced ferredoxin, which differs from confurcating [FeFe]-hydrogenases. Hyd1ABC provides a mechanism by which S. wolfei can reoxidize NADH produced during syntrophic butyrate oxidation when low hydrogen partial pressures are maintained by a hydrogen-consuming microorganism.IMPORTANCE Our work provides mechanistic understanding of the obligate metabolic coupling that occurs between hydrogen-producing fatty and aromatic acid-degrading microorganisms and their hydrogen-consuming partners in the process called syntrophy (feeding together). The multimeric [FeFe]-hydrogenase used NADH without the involvement of reduced ferredoxin. The multimeric [FeFe]-hydrogenase would produce hydrogen from NADH only when hydrogen concentrations were low. Hydrogen production from NADH by Syntrophomonas wolfei would likely cease before any detectable amount of cell growth occurred. Thus, continual hydrogen production requires the presence of a hydrogen-consuming partner to keep hydrogen concentrations low and explains, in part, the obligate requirement that S. wolfei has for a hydrogen-consuming partner organism during growth on butyrate. We have successfully expressed genes encoding a multimeric [FeFe]-hydrogenase in E. coli, demonstrating that such an approach can be advantageous to characterize complex redox proteins from difficult-to-culture microorganisms.


Assuntos
Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Firmicutes/enzimologia , Hidrogenase/metabolismo , Ferro/metabolismo , NAD/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dimerização , Firmicutes/química , Firmicutes/genética , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Proteínas Ferro-Enxofre , Cinética , Oxirredução
16.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28802272

RESUMO

Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium.IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.


Assuntos
Compostos de Amônio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Fixação de Nitrogênio , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrogenase/genética , Hidrogenase/metabolismo , Família Multigênica , Nitrogênio/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo
17.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432097

RESUMO

Overcoming the inhibitory effects of excess environmental ammonium on nitrogenase synthesis or activity and preventing ammonium assimilation have been considered strategies to increase the amount of fixed nitrogen transferred from bacterial to plant partners in associative or symbiotic plant-diazotroph relationships. The GlnE adenylyltransferase/adenylyl-removing enzyme catalyzes reversible adenylylation of glutamine synthetase (GS), thereby affecting the posttranslational regulation of ammonium assimilation that is critical for the appropriate coordination of carbon and nitrogen assimilation. Since GS is key to the sole ammonium assimilation pathway of Azotobacter vinelandii, attempts to obtain deletion mutants in the gene encoding GS (glnA) have been unsuccessful. We have generated a glnE deletion strain, thus preventing posttranslational regulation of GS. The resultant strain containing constitutively active GS is unable to grow well on ammonium-containing medium, as previously observed in other organisms, and can be cultured only at low ammonium concentrations. This phenotype is caused by the lack of downregulation of GS activity, resulting in high intracellular glutamine levels and severe perturbation of the ratio of glutamine to 2-oxoglutarate under excess-nitrogen conditions. Interestingly, the mutant can grow diazotrophically at rates comparable to those of the wild type. This observation suggests that the control of nitrogen fixation-specific gene expression at the transcriptional level in response to 2-oxoglutarate via NifA is sufficiently tight to alone regulate ammonium production at levels appropriate for optimal carbon and nitrogen balance.IMPORTANCE In this study, the characterization of the glnE knockout mutant of the model diazotroph Azotobacter vinelandii provides significant insights into the integration of the regulatory mechanisms of ammonium production and ammonium assimilation during nitrogen fixation. The work reveals the profound fidelity of nitrogen fixation regulation in providing ammonium sufficient for maximal growth but constraining energetically costly excess production. A detailed fundamental understanding of the interplay between the regulation of ammonium production and assimilation is of paramount importance in exploiting existing and potentially engineering new plant-diazotroph relationships for improved agriculture.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/genética , Deleção de Genes , Glutamato-Amônia Ligase/genética , Fixação de Nitrogênio , Compostos de Amônio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase/metabolismo
18.
FEBS Lett ; 590(17): 2991-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27447465

RESUMO

The characteristic His-Glu catalytic dyad of the disulfide oxidoreductase (DSOR) family of enzymes is replaced in 2-ketopropyl coenzyme M oxidoreductase/carboxylase (2-KPCC) by the residues Phe-His. 2-KPCC is the only known carboxylating member of the DSOR family and has replaced this dyad potentially to eliminate proton-donating groups at a key position in the active site. Substitution of the Phe-His by the canonical residues results in production of higher relative concentrations of acetone versus the natural product acetoacetate. The results indicate that these differences in 2-KPCC are key in discriminating between carbon dioxide and protons as attacking electrophiles.


Assuntos
Catálise , Dipeptídeos/química , Cetona Oxirredutases/química , Dióxido de Carbono/química , Domínio Catalítico , Dipeptídeos/metabolismo , Cetona Oxirredutases/metabolismo , Prótons , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/enzimologia
19.
Appl Environ Microbiol ; 82(13): 3698-3710, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084023

RESUMO

Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.


Assuntos
Bactérias/metabolismo , Fixação de Nitrogênio , Plantas/metabolismo , Plantas/microbiologia , Simbiose , Bactérias/crescimento & desenvolvimento
20.
J Bacteriol ; 197(9): 1690-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733617

RESUMO

UNLABELLED: Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE: Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Molecular , Molibdênio/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Aerobiose , Compostos de Amônio/metabolismo , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Biologia Computacional , Genoma Arqueal , Genoma Bacteriano , Nitrogênio/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...